Ex vivo rapamycin generates apoptosis-resistant donor Th2 cells that persist in vivo and prevent hemopoietic stem cell graft rejection.

نویسندگان

  • Jacopo Mariotti
  • Jason Foley
  • Unsu Jung
  • Todd Borenstein
  • Nermina Kantardzic
  • Soo Han
  • Joshua T Hanson
  • Elaine Wong
  • Nicole Buxhoeveden
  • Jane B Trepel
  • Antonio Tito Fojo
  • William Telford
  • Daniel H Fowler
چکیده

Because ex vivo rapamycin generates murine Th2 cells that prevent Graft-versus-host disease more potently than control Th2 cells, we hypothesized that rapamycin would generate Th2/Tc2 cells (Th2/Tc2.R cells) that abrogate fully MHC-disparate hemopoietic stem cell rejection more effectively than control Th2/Tc2 cells. In a B6-into-BALB/c graft rejection model, donor Th2/Tc2.R cells were indeed enriched in their capacity to prevent rejection; importantly, highly purified CD4+ Th2.R cells were also highly efficacious for preventing rejection. Rapamycin-generated Th2/Tc2 cells were less likely to die after adoptive transfer, accumulated in vivo at advanced proliferative cycles, and were present in 10-fold higher numbers than control Th2/Tc2 cells. Th2.R cells had a multifaceted, apoptosis-resistant phenotype, including: 1) reduced apoptosis after staurosporine addition, serum starvation, or CD3/CD28 costimulation; 2) reduced activation of caspases 3 and 9; and 3) increased anti-apoptotic Bcl-xL expression and reduced proapoptotic Bim and Bid expression. Using host-versus-graft reactivity as an immune correlate of graft rejection, we found that the in vivo efficacy of Th2/Tc2.R cells 1) did not require Th2/Tc2.R cell expression of IL-4, IL-10, perforin, or Fas ligand; 2) could not be reversed by IL-2, IL-7, or IL-15 posttransplant therapy; and 3) was intact after therapy with Th2.R cells relatively devoid of Foxp3 expression. We conclude that ex vivo rapamycin generates Th2 cells that are resistant to apoptosis, persist in vivo, and effectively prevent rejection by a mechanism that may be distinct from previously described graft-facilitating T cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ex vivo rapamycin generates donor Th2 cells that potently inhibit graft-versus-host disease and graft-versus-tumor effects via an IL-4-dependent mechanism.

Rapamycin (sirolimus) inhibits graft-vs-host disease (GVHD) and polarizes T cells toward Th2 cytokine secretion after allogeneic bone marrow transplantation (BMT). Therefore, we reasoned that ex vivo rapamycin might enhance the generation of donor Th2 cells capable of preventing GVHD after fully MHC-disparate murine BMT. Using anti-CD3 and anti-CD28 costimulation, CD4+ Th2 cell expansion was pr...

متن کامل

Phase 2 clinical trial of rapamycin-resistant donor CD4+ Th2/Th1 (T-Rapa) cells after low-intensity allogeneic hematopoietic cell transplantation.

In experimental models, ex vivo induced T-cell rapamycin resistance occurred independent of T helper 1 (Th1)/T helper 2 (Th2) differentiation and yielded allogeneic CD4(+) T cells of increased in vivo efficacy that facilitated engraftment and permitted graft-versus-tumor effects while minimizing graft-versus-host disease (GVHD). To translate these findings, we performed a phase 2 multicenter cl...

متن کامل

Dendritic Cells in Transplant Tolerance

Dendritic cells (DCs) are a heterogeneous family of professional APCs involved in priming adaptive immune responses. Donor DCs (direct pathway of allorecognition) and recipient DCs presenting processed donor major histocompatibility complex (MHC) as peptides (indirect pathway of allorecognition) participate actively in graft rejection by stimulating recipient T cell responses following organ tr...

متن کامل

Graft rejection as a Th1-type process amenable to regulation by donor Th2-type cells through an interleukin-4/STAT6 pathway.

Graft rejection has been defined as the mirror image of graft-versus-host disease, which is biologically characterized primarily as a Th1-type process. As such, we reasoned that graft rejection would represent a Th1 response amenable to Th2 modulation. Indeed, adoptive transfer of host Th1-type cells mediated rejection of fully MHC-disparate murine bone marrow allografts more effectively than h...

متن کامل

Comparison of the Ex Vivo Expansion of UCB-Derived CD34+ in 3D DBM/MBA Scaffolds with USSC as a Feeder Layer

    Objective(s): Ex vivo expansion of hematopoitic stem cells is an alternative way to increase umbilical cord blood (UCB)-CD34+ cells for bone marrow transplantation. For this purpose demineralized bone matrix (DBM) and mineralized bone allograft (MBA) as two scaffolds based on bone matrix and stem cell niche, were simultaneously used to enhance the effect of human mesenchymal pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 180 1  شماره 

صفحات  -

تاریخ انتشار 2008